organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

rac-Ethyl 3-(3-bromo-2-thienyl)-2-oxo-6-(4-propoxyphenyl)cyclohex-3-ene-1carboxylate

Andreas Fischer,^a* M. T. Swamy,^b B. Narayana^c and H. S. Yathirajan^b

^aInorganic Chemistry, School of Chemical Science and Engineering, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden, ^bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India

Correspondence e-mail: afischer@kth.se

Received 5 July 2008; accepted 9 October 2008

Key indicators: single-crystal X-ray study; T = 299 K; mean σ (C–C) = 0.009 Å; R factor = 0.067; wR factor = 0.136; data-to-parameter ratio = 15.1.

The racemic title compound, $C_{22}H_{23}BrO_4S$, crystallizes with two molecules in the asymmetric unit. The dihedral angles between the thiophene and phenyl rings are 71.64 (17) and 73.41 (17)°.

Related literature

For general background, see: House (1972); Tabba *et al.* (1995); Dimmock *et al.* (1999); Dhar (1981); Padmavathi *et al.* (1999, 2000, 2001*a*,*b*). For related structures, see: Fischer *et al.* (2007*a*,*b*, 2008); Yao *et al.* (2006).

Experimental

Crystal data

- $\begin{array}{l} C_{22}H_{23}BrO_4S\\ M_r = 463.39\\ Triclinic, \ P\overline{1}\\ a = 8.809 \ (3) \ \mathring{A}\\ b = 11.878 \ (2) \ \mathring{A}\\ c = 20.178 \ (7) \ \mathring{A}\\ \alpha = 92.66 \ (2)^{\circ}\\ \beta = 94.61 \ (2)^{\circ} \end{array}$
- $\gamma = 90.16 (2)^{\circ}$ $V = 2102.2 (11) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 2.08 \text{ mm}^{-1}$ T = 299 K $0.38 \times 0.31 \times 0.11 \text{ mm}$

Data collection

```
Bruker–Nonius KappaCCD
diffractometer
Absorption correction: numerical
(HABITUS; Herrendorf &
Bärnighausen, 1997);
T_{\rm min} = 0.613, T_{\rm max} = 0.881
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.067$ 506 parameters $wR(F^2) = 0.136$ H-atom parameters constrainedS = 1.17 $\Delta \rho_{max} = 0.45$ e Å $^{-3}$ 7652 reflections $\Delta \rho_{min} = -0.53$ e Å $^{-3}$

Data collection: *SMART* (Bruker, 1998); cell refinement: *DIRAX* (Duisenberg, 1992); data reduction: *EVALCCD* (Duisenberg *et al.*, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick,

 $R_{\rm int} = 0.074$

31851 measured reflections

7652 independent reflections

4630 reflections with $I > 2\sigma(I)$

2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *publCIF* (Westrip, 2008).

MTS thanks the University of Mysore for research facilities. The Swedish Research Council (VR) is acknowledged for providing funding for the single-crystal diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2180).

References

Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (1998). *SMART*. Bruker AXS Inc., Madison, Wisconsin, USA.

- Dhar, D. N. (1981). *The Chemistry of Chalcones and Related Compounds*. New York: Wiley-Interscience.
- Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1150.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.
- Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007a). Acta Cryst. E63, 03616.
- Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007b). Acta Cryst. E63, o254–o255.
- Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2008). Acta Cryst. E64, 0560.
- Herrendorf, W. & Bärnighausen, H. (1997). *HABITUS*. University of Karlsruhe, Germany.
- House, H. O. (1972). Modern Synthetic Reactions, 2nd ed., p. 595. Menlo Park, California: W. A. Benjamin.
- Padmavathi, V., Mohana Reddy, B. J., Balaiah, A., Venugopal Reddy, K. & Bhaskar Reddy, D. (2000). *Molecules*, 5, 1281–1286.
- Padmavathi, V., Sharmila, K., Balaiah, A., Somashekara Reddy, A. & Bhaskar Reddy, D. (2001a). Synth. Commun. 31, 2119–2126.
- Padmavathi, V., Sharmila, K., Padmaja, A. & Bhaskar Reddy, D. (1999). *Heterocycl. Commun.* 5, 451–456.
- Padmavathi, V., Sharmila, K., Somashekara Reddy, A. & Bhaskar Reddy, D. (2001b). Indian J. Chem. Sect B, 40, 11–14.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tabba, H. D., Yousef, N. M. & Alarab, M. M. (1995). Collect. Czech. Chem. Commun. 60, 594–604.
- Westrip (2008). publCIF. In preparation.
- Yao, L.-Y., Zhang, C. & Wang, B.-S. (2006). Acta Cryst. E62, o2768-o2769.

Acta Cryst. (2008). E64, o2152 [doi:10.1107/S1600536808032650]

rac-Ethyl 3-(3-bromo-2-thienyl)-2-oxo-6-(4-propoxyphenyl)cyclohex-3-ene-1-carboxylate

A. Fischer, M. T. Swamy, B. Narayana and H. S. Yathirajan

Comment

Chalcones and the corresponding heterocyclic analogues are valuable intermediates in organic synthesis (Dhar, 1981) and exhibit a multitude of biological activities (Dimmock *et al.* 1999). From a chemical point of view, an important feature of chalcones and their heteroanalogues is the ability to act as activated unsaturated systems in conjugated addition reactions of carbanions in the presence of basic catalysts (House, 1972). This type of reaction may be exploited with the view of obtaining highly functionalized cyclohexene derivatives (Tabba *et al.*,1995) but is more commonly used for the preparation of 3,5-diaryl-6-carbethoxycyclohexanones *via* Michael addition of ethylacetoacetate. The mentioned cyclohexenones are efficient synthesis in building spiranic compounds (Padmavathi *et al.*,2001) or intermediates in the synthesis of benzisoxazoles or carbazolederivatives (Padmavathi *et al.*, 1999, 2000, 2001a,b). In view of the importance of these derivatives, a new derivative *rac*-ethyl-3-(3-bromo-2-thienyl)-6-(4-propoxyphenyl)-2-oxocyclohex-3-ene-1-carboxylate, C₂₂H₂₃BrO₄S was prepared and the crystal structure is reported here.

The compound is prepared by the cyclocondensation of ethyl acetoacetate with chalcone which leads to the generation of two chiral centers at C1 and C6 in the structure of cyclohexanone (I). As the reaction is not stereoselective, both configurations of the chiral carbon atoms are expected to be obtained in the synthesiszed cyclohexanone(I), which would result in a mixture of diastereomers. No attempt to separate the diastereomeric I has been undertaken and the crystals were grown from the mixture after recrystallization.

Experimental

(2E)-1-(3-Bromo-2-thienyl)-3-(4-propoxyphenyl)prop-2-en-1-one(1) (1.76 g, 5 mmol) and ethyl acetoacetate (2) (0.65 g, 5 mmol) were refluxed for 2 h in 15 mL ethanol in presence of 0.8 mL 10% NaOH. The reaction mixture was cooled to room temperature and the reaction mass was filtered and recrystallized using methanol. X-ray quality crystals were grown from acetone. Yield = 67%; mp 349–351 K. CHS Calculated: 57.02, 5.00, 6.92; Observed: 56.89,4.81, 6.80.

Refinement

Hydrogen atoms were placed at calculated positions and refined riding on the respective carrier atom. Attempts to improve the structure model using a split position for C43 and C44 resulted in an unstable refinement. Attempts to acquire data at low temperature resulted in severe deterioration of the crystal quality.

Figures

Fig. 1. : The two molecules in the asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level.

rac-Ethyl 3-(3-bromo-2-thienyl)-2-oxo-6-(4-propoxyphenyl)cyclohex-3-ene-1-carboxylate

Crystal data	
$C_{22}H_{23}BrO_4S$	Z = 4
$M_r = 463.40$	$F_{000} = 952$
Triclinic, P1	$D_{\rm x} = 1.464 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073$ Å
a = 8.809 (3) Å	Cell parameters from 26 reflections
<i>b</i> = 11.878 (2) Å	$\theta = 5.7 - 16.4^{\circ}$
c = 20.178 (7) Å	$\mu = 2.08 \text{ mm}^{-1}$
$\alpha = 92.66 \ (2)^{\circ}$	T = 299 K
$\beta = 94.61 \ (2)^{\circ}$	Plate, colourless
$\gamma = 90.16 \ (2)^{\circ}$	$0.38 \times 0.31 \times 0.11 \text{ mm}$
$V = 2102.2 (11) \text{ Å}^3$	

Data collection

Bruker-Nonius KappaCCD diffractometer	4630 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.074$
ϕ and ω scans	$\theta_{\text{max}} = 25.5^{\circ}$
Absorption correction: numerical (program? reference?)	$\theta_{\min} = 4.6^{\circ}$
$T_{\min} = 0.613, T_{\max} = 0.881$	$h = -10 \rightarrow 10$
31851 measured reflections	$k = -13 \rightarrow 14$
7652 independent reflections	$l = -24 \rightarrow 23$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.067$	$w = 1/[\sigma^2(F_o^2) + 5.8P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.136$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.17	$\Delta \rho_{max} = 0.45 \text{ e} \text{ Å}^{-3}$
7652 reflections	$\Delta \rho_{min} = -0.52 \text{ e } \text{\AA}^{-3}$
506 parameters	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Eractional	atomic coordina	as and isotropic	or aquinalant	isotronic dis	nlacomont	naramatara	182)
ггасионаи		es una isoiropic	or equivalent	isoiropic ais	Diacemeni	parameters ((А,	1

	x	у	Ζ	Uiso*/Ueq
Br1	1.00872 (8)	0.74502 (5)	1.07626 (3)	0.0570 (2)
Br2	0.51193 (8)	0.76585 (5)	1.07551 (3)	0.0590 (2)
S1	0.69191 (18)	0.46070 (13)	1.03375 (8)	0.0518 (4)
S2	0.19207 (18)	1.04063 (14)	1.03454 (8)	0.0529 (4)
C1	0.7253 (7)	0.4941 (5)	1.1156 (3)	0.0542 (16)
C2	0.8199 (7)	0.5836 (5)	1.1279 (3)	0.0474 (14)
C3	0.8687 (6)	0.6238 (4)	1.0689 (3)	0.0395 (13)
C4	0.8093 (6)	0.5679 (4)	1.0113 (3)	0.0387 (13)
C5	0.8252 (6)	0.5818 (4)	0.9409 (3)	0.0361 (12)
C6	0.9291 (7)	0.6506 (4)	0.9193 (3)	0.0446 (14)
C7	0.9453 (7)	0.6673 (4)	0.8494 (3)	0.0469 (14)
C8	0.8412 (6)	0.6015 (4)	0.7975 (3)	0.0384 (12)
C9	0.7790 (6)	0.4937 (4)	0.8233 (3)	0.0379 (12)
C10	0.7154 (6)	0.5177 (4)	0.8910 (3)	0.0404 (13)
C11	0.6635 (6)	0.4335 (4)	0.7750 (3)	0.0393 (13)
C12	0.5401 (7)	0.4886 (5)	0.7429 (3)	0.0495 (15)
C13	0.4415 (8)	0.4320 (5)	0.6973 (3)	0.0598 (17)
C14	0.4589 (7)	0.3188 (5)	0.6817 (3)	0.0516 (15)
C15	0.5740 (7)	0.2611 (5)	0.7149 (3)	0.0510 (15)

C16	0.6750 (7)	0.3199 (4)	0.7606 (3)	0.0463 (14)
C17	0.3718 (9)	0.1587 (6)	0.6120 (4)	0.072 (2)
C18	0.2557 (10)	0.1339 (7)	0.5533 (4)	0.088 (3)
C19	0.2534 (13)	0.0159 (9)	0.5288 (6)	0.144 (5)
C20	0.9318 (7)	0.5792 (5)	0.7381 (3)	0.0495 (15)
C21	1.0231 (10)	0.6541 (7)	0.6429 (4)	0.090 (3)
C22	0.9822 (14)	0.7411 (8)	0.5968 (5)	0.136 (4)
C23	0.2240 (7)	1.0186 (6)	1.1170 (3)	0.0553 (16)
C24	0.3224 (7)	0.9319 (5)	1.1279 (3)	0.0495 (15)
C25	0.3712 (6)	0.8839 (4)	1.0692 (3)	0.0399 (13)
C26	0.3119 (6)	0.9313 (4)	1.0117 (3)	0.0376 (12)
C27	0.4301 (6)	0.8377 (4)	0.9187 (3)	0.0450 (14)
C28	0.4458 (7)	0.8132 (4)	0.8486 (3)	0.0478 (14)
C29	0.3417 (6)	0.8698 (4)	0.7973 (3)	0.0399 (13)
C30	0.2803 (6)	0.9815 (4)	0.8246 (3)	0.0396 (13)
C31	0.2186 (6)	0.9668 (4)	0.8918 (3)	0.0412 (13)
C32	0.3274 (6)	0.9096 (4)	0.9413 (3)	0.0386 (13)
C33	0.1648 (6)	1.0349 (4)	0.7757 (3)	0.0395 (13)
C34	0.1797 (7)	1.1466 (4)	0.7618 (3)	0.0457 (14)
C35	0.0795 (7)	1.1981 (5)	0.7162 (3)	0.0513 (15)
C36	-0.0374 (7)	1.1362 (5)	0.6834 (3)	0.0477 (14)
C37	-0.0588 (7)	1.0261 (5)	0.6991 (3)	0.0561 (16)
C38	0.0409 (7)	0.9759 (5)	0.7438 (3)	0.0505 (15)
C39	-0.1223 (8)	1.2903 (5)	0.6170 (3)	0.0592 (17)
C40	-0.2396 (9)	1.3122 (6)	0.5615 (4)	0.073 (2)
C41	-0.2367 (12)	1.4334 (7)	0.5416 (5)	0.112 (3)
C42	0.4294 (7)	0.8853 (5)	0.7374 (3)	0.0518 (15)
C43	0.5140 (15)	0.7996 (8)	0.6391 (5)	0.142 (5)
C44	0.5026 (15)	0.7049 (9)	0.6013 (5)	0.146 (5)
01	1.0389 (6)	0.7333 (4)	0.8325 (2)	0.0744 (14)
O2	0.3581 (5)	0.2734 (3)	0.6319 (2)	0.0654 (12)
O3	1.0136 (5)	0.5001 (4)	0.7321 (2)	0.0650 (12)
O4	0.9151 (6)	0.6605 (4)	0.6946 (2)	0.0655 (12)
O5	0.5407 (6)	0.7450 (4)	0.8317 (2)	0.0753 (14)
O6	-0.1381 (5)	1.1766 (3)	0.6339 (2)	0.0608 (12)
O7	0.5113 (6)	0.9633 (4)	0.7307 (2)	0.0740 (14)
08	0.4101 (7)	0.7991 (4)	0.6931 (2)	0.0820 (16)
H1	0.6832	0.4552	1.1487	0.065*
H2	0.8495	0.6145	1.1702	0.057*
H6	0.9947	0.6899	0.9506	0.054*
H8	0.7551	0.6497	0.7841	0.046*
Н9	0.8651	0.4425	0.8306	0.046*
H10A	0.6225	0.5609	0.8845	0.048*
H10B	0.6893	0.4466	0.9092	0.048*
H12	0.5251	0.5648	0.7526	0.059*
H13	0.3610	0.4706	0.6764	0.072*
H15	0.5843	0.1838	0.7071	0.061*
H16	0.7535	0.2804	0.7825	0.056*
H17A	0.3522	0.1114	0.6484	0.087*

H17B	0.4738	0.1435	0.5992	0.087*
H18A	0.1552	0.1540	0.5663	0.105*
H18B	0.2782	0.1810	0.5173	0.105*
H19A	0.3530	-0.0052	0.5167	0.173*
H19B	0.1815	0.0064	0.4906	0.173*
H19C	0.2243	-0.0310	0.5632	0.173*
H21A	1.1263	0.6663	0.6625	0.108*
H21B	1.0175	0.5805	0.6199	0.108*
H22A	0.8867	0.7220	0.5726	0.163*
H22B	1.0596	0.7469	0.5662	0.163*
H22C	0.9733	0.8120	0.6210	0.163*
H23	0.1803	1.0609	1.1504	0.066*
H24	0.3530	0.9072	1.1699	0.059*
H27	0.4951	0.8018	0.9494	0.054*
H29	0.2553	0.8193	0.7840	0.048*
H30	0.3669	1.0337	0.8320	0.048*
H31A	0.1253	0.9228	0.8851	0.049*
H31B	0.1930	1.0404	0.9105	0.049*
H34	0.2591	1.1888	0.7837	0.055*
H35	0.0921	1.2737	0.7077	0.062*
H37	-0.1420	0.9855	0.6791	0.067*
H38	0.0258	0.9009	0.7531	0.061*
H39A	-0.0211	1.3035	0.6032	0.071*
H39B	-0.1374	1.3404	0.6553	0.071*
H40A	-0.3397	1.2947	0.5751	0.088*
H40B	-0.2217	1.2628	0.5233	0.088*
H41A	-0.2348	1.4829	0.5806	0.135*
H41B	-0.3260	1.4480	0.5128	0.135*
H41C	-0.1475	1.4462	0.5185	0.135*
H43A	0.4900	0.8631	0.6117	0.170*
H43B	0.6181	0.8089	0.6583	0.170*
H44A	0.5363	0.6427	0.6273	0.218*
H44B	0.5648	0.7106	0.5646	0.218*
H44C	0.3984	0.6928	0.5846	0.218*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0682 (5)	0.0402 (3)	0.0602 (4)	-0.0072 (3)	-0.0073 (3)	-0.0002 (3)
Br2	0.0684 (5)	0.0400 (3)	0.0662 (5)	0.0054 (3)	-0.0103 (3)	0.0053 (3)
S1	0.0468 (9)	0.0620 (9)	0.0474 (9)	-0.0140 (7)	0.0051 (7)	0.0089 (7)
S2	0.0447 (9)	0.0639 (10)	0.0497 (10)	0.0139 (7)	0.0043 (7)	-0.0032 (7)
C1	0.047 (4)	0.072 (4)	0.046 (4)	0.001 (3)	0.010 (3)	0.018 (3)
C2	0.045 (4)	0.054 (3)	0.043 (4)	0.010 (3)	0.002 (3)	0.002 (3)
C3	0.035 (3)	0.036 (3)	0.047 (3)	0.009 (2)	-0.003 (3)	-0.002 (2)
C4	0.034 (3)	0.035 (3)	0.049 (4)	0.007 (2)	0.007 (3)	0.004 (2)
C5	0.033 (3)	0.030 (3)	0.046 (3)	0.007 (2)	0.004 (2)	0.004 (2)
C6	0.049 (4)	0.038 (3)	0.046 (4)	-0.008 (3)	0.003 (3)	-0.001 (3)

C7	0.048 (4)	0.032 (3)	0.061 (4)	-0.002 (3)	0.013 (3)	0.003 (3)
C8	0.040 (3)	0.036 (3)	0.041 (3)	0.002 (2)	0.010 (2)	0.005 (2)
C9	0.036 (3)	0.035 (3)	0.043 (3)	-0.001 (2)	0.003 (2)	0.006 (2)
C10	0.038 (3)	0.038 (3)	0.046 (3)	-0.006 (2)	0.005 (3)	0.000 (2)
C11	0.042 (3)	0.037 (3)	0.040 (3)	0.000 (2)	0.007 (3)	0.005 (2)
C12	0.056 (4)	0.037 (3)	0.055 (4)	0.002 (3)	0.002 (3)	0.000 (3)
C13	0.057 (4)	0.052 (4)	0.068 (5)	0.000 (3)	-0.010 (3)	0.004 (3)
C14	0.056 (4)	0.052 (4)	0.046 (4)	-0.009 (3)	0.004 (3)	-0.005 (3)
C15	0.063 (4)	0.035 (3)	0.056 (4)	-0.001 (3)	0.008 (3)	0.003 (3)
C16	0.048 (4)	0.039 (3)	0.052 (4)	-0.002 (3)	0.001 (3)	0.005 (3)
C17	0.085 (5)	0.066 (4)	0.065 (5)	-0.022 (4)	0.005 (4)	-0.015 (4)
C18	0.100 (6)	0.093 (6)	0.065 (5)	-0.023 (5)	-0.009 (4)	-0.021 (4)
C19	0.134 (10)	0.129 (9)	0.156 (11)	-0.018 (7)	-0.031 (8)	-0.064 (8)
C20	0.057 (4)	0.044 (3)	0.048 (4)	-0.008 (3)	0.005 (3)	0.004 (3)
C21	0.113 (7)	0.106 (6)	0.057 (5)	-0.006 (5)	0.039 (5)	0.012 (4)
C22	0.208 (13)	0.123 (8)	0.088 (7)	0.016 (8)	0.070 (8)	0.040 (6)
C23	0.040 (4)	0.075 (4)	0.049 (4)	-0.004 (3)	0.005 (3)	-0.012 (3)
C24	0.040 (3)	0.059 (4)	0.049 (4)	-0.019 (3)	-0.003 (3)	0.004 (3)
C25	0.039 (3)	0.036 (3)	0.044 (3)	-0.015 (2)	-0.003 (3)	0.001 (2)
C26	0.024 (3)	0.038 (3)	0.051 (4)	-0.009 (2)	0.001 (2)	-0.004 (2)
C27	0.039 (3)	0.039 (3)	0.056 (4)	0.005 (3)	0.000 (3)	0.004 (3)
C28	0.051 (4)	0.036 (3)	0.057 (4)	-0.001 (3)	0.008 (3)	-0.003 (3)
C29	0.039 (3)	0.034 (3)	0.047 (3)	-0.001 (2)	0.007 (3)	-0.001 (2)
C30	0.037 (3)	0.033 (3)	0.049 (3)	-0.004 (2)	0.003 (3)	-0.001 (2)
C31	0.044 (3)	0.035 (3)	0.044 (3)	0.008 (2)	0.004 (3)	-0.002 (2)
C32	0.033 (3)	0.030 (3)	0.051 (4)	-0.008 (2)	0.001 (3)	0.001 (2)
C33	0.044 (3)	0.034 (3)	0.041 (3)	0.000 (2)	0.009 (3)	0.000 (2)
C34	0.047 (4)	0.036 (3)	0.053 (4)	-0.004 (3)	-0.003 (3)	0.001 (3)
C35	0.061 (4)	0.036 (3)	0.056 (4)	0.001 (3)	0.002 (3)	0.003 (3)
C36	0.052 (4)	0.050 (3)	0.041 (3)	0.003 (3)	0.002 (3)	0.004 (3)
C37	0.056 (4)	0.051 (4)	0.059 (4)	-0.012(3)	-0.012 (3)	0.005 (3)
C38	0.050 (4)	0.036 (3)	0.066 (4)	-0.003(3)	0.002 (3)	0.010 (3)
C39	0.069 (5)	0.061 (4)	0.048 (4)	0.013 (3)	0.003 (3)	0.008 (3)
C40	0.089 (6)	0.076 (5)	0.055 (4)	0.015 (4)	0.000 (4)	0.011 (4)
C41	0.146 (9)	0.085 (6)	0.101 (7)	0.021 (6)	-0.030 (6)	0.025 (5)
C42	0.055 (4)	0.047 (3)	0.055 (4)	0.009 (3)	0.014 (3)	-0.001 (3)
C43	0.253 (14)	0.097 (7)	0.087 (7)	-0.033 (8)	0.105 (8)	-0.031 (6)
C44	0.207 (13)	0.126 (9)	0.114 (9)	0.013 (9)	0.083 (9)	-0.009 (7)
01	0.094 (4)	0.073 (3)	0.058 (3)	-0.044 (3)	0.013 (3)	0.008 (2)
02	0.075 (3)	0.056 (3)	0.062 (3)	-0.015(2)	-0.014(2)	-0.003(2)
03	0.073 (3)	0.059 (3)	0.066 (3)	0.016 (2)	0.024 (2)	0.002 (2)
04	0.088 (4)	0.065 (3)	0.048 (3)	0.008 (2)	0.022(2)	0.018(2)
05	0.087 (4)	0.066 (3)	0.075 (3)	0.037 (3)	0.017 (3)	-0.006(2)
06	0.071 (3)	0.053 (2)	0.057 (3)	0.003 (2)	-0.010(2)	0,009 (2)
07	0.082(4)	0.063(3)	0.082 (4)	-0.019(3)	0.034 (3)	0,006(2)
08	0.125 (5)	0.062 (3)	0.062(3)	-0.008(3)	0.038 (3)	-0.014(2)
						···· (4)

Geometric parameters (Å, °)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Br1—C3	1.887 (5)	C39—O6	1.418 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Br2—C25	1.877 (6)	C39—C40	1.495 (9)
S1-C4 1.737 (5) $C42-07$ 1.192 (7) $S2-C23$ 1.697 (7) $C42-08$ 1.329 (7) $S2-C26$ 1.744 (5) $C43-C44$ 1.329 (12) $C1-C2$ 1.350 (8) $C43-C44$ 1.329 (12) $C1-C2$ 1.350 (8) $C1-H1$ 0.9300 $C3-C4$ 1.375 (7) $C2-H2$ 0.9301 $C5-C6$ 1.338 (7) $C6-H6$ 0.9300 $C5-C6$ 1.338 (7) $C6-H8$ 0.9800 $C5-C6$ 1.338 (7) $C6-H8$ 0.9700 $C7-C1$ 1.516 (7) $C9-H9$ 0.9800 $C7-C3$ 1.521 (8) $C10-H10A$ 0.9700 $C7-C4$ 1.521 (8) $C12-H12$ 0.9299 $C8-C20$ 1.507 (8) $C13-H13$ 0.9300 $C9-C11$ 1.506 (7) $C16-H16$ 0.9300 $C9-C10$ 1.533 (7) $C17-H17A$ 0.9609 $C11-C16$ 1.372 (7) $C17-H17A$ 0.9600 $C12-C13$ 1.364 (8) $C18-H18A$ 0.9700	S1—C1	1.682 (6)	C40—C41	1.513 (10)
S2-C23 1.697 (7) $C42-08$ 1.329 (7) $S2-C26$ 1.744 (5) $C43-C44$ 1.329 (12) $C1-C2$ 1.350 (8) $C1-H1$ 0.9300 $C2-C3$ 1.402 (8) $C1-H1$ 0.9300 $C3-C4$ 1.375 (7) $C2-H2$ 0.9301 $C4-C5$ 1.456 (7) $C6-H6$ 0.9300 $C5-C10$ 1.516 (7) $C9-H9$ 0.9800 $C5-C10$ 1.516 (7) $C9-H9$ 0.9700 $C7-C8$ 1.521 (8) $C10-H10A$ 0.9700 $C7-C8$ 1.521 (8) $C12-H12$ 0.9299 $C8-C20$ 1.507 (8) $C13-H13$ 0.9300 $C9-C10$ 1.533 (7) $C1-H17A$ 0.9690 $C1-C16$ 1.372 (7) $C17-H17A$ 0.9690 $C1-C16$ 1.372 (7) $C17-H17A$ 0.9690 $C11-C16$ 1.372 (7) $C17-H17A$ 0.9600 $C1-C14$ 1.378 (8) $C19-H19A$ 0.9600 $C14-C15$ 1.376 (7) $C19-H19A$ 0.9600	S1—C4	1.737 (5)	C42—O7	1.192 (7)
S2-C26 1.744 (5) $C43-C44$ 1.329 (12) $C1-C2$ 1.350 (8) $C43-O8$ 1.480 (9) $C2-C3$ 1.402 (8) $C1-H1$ 0.9300 $C3-C4$ 1.375 (7) $C2-H2$ 0.9301 $C4-C5$ 1.456 (7) $C6-H6$ 0.9300 $C5-C6$ 1.338 (7) $C8-H8$ 0.9800 $C5-C10$ 1.516 (7) $C9-H9$ 0.9800 $C6-C7$ 1.451 (8) $C10-H10A$ 0.9700 $C7-C6$ 1.521 (8) $C12-H12$ 0.9299 $C8-C20$ 1.507 (8) $C13-H13$ 0.9300 $C9-C11$ 1.506 (7) $C16-H16$ 0.9300 $C9-C10$ 1.533 (7) $C17-H17A$ 0.9699 $C11-C12$ 1.400 (8) $C18-H18A$ 0.9700 $C12-C13$ 1.364 (8) $C18-H18A$ 0.9700 $C14-C15$ 1.373 (8) $C19-H19A$ 0.9600 $C14-C15$ 1.373 (8) $C19-H19A$ 0.9600 $C14-C15$ 1.373 (8) $C19-H19A$ 0.9600	S2—C23	1.697 (7)	C42—O8	1.329 (7)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S2—C26	1.744 (5)	C43—C44	1.329 (12)
C2-C3 $1.402 (8)$ $C1-H1$ 0.9300 $C3-C4$ $1.375 (7)$ $C2-H2$ 0.9301 $C4-C5$ $1.456 (7)$ $C6-H6$ 0.9300 $C5-C6$ $1.338 (7)$ $C8-H8$ 0.9800 $C5-C10$ $1.516 (7)$ $C9-H9$ 0.9800 $C6-C7$ $1.451 (8)$ $C10-H10A$ 0.9700 $C7-O1$ $1.216 (6)$ $C10-H10B$ 0.9700 $C7-C8$ $1.521 (8)$ $C12-H12$ 0.9299 $C8-C20$ $1.507 (8)$ $C13-H13$ 0.9301 $C8-C9$ $1.522 (7)$ $C16-H16$ 0.9300 $C9-C11$ $1.506 (7)$ $C16-H16$ 0.9700 $C11-C16$ $1.372 (7)$ $C17-H17B$ 0.9700 $C11-C16$ $1.372 (7)$ $C17-H17B$ 0.9700 $C11-C12$ $1.400 (8)$ $C18-H18A$ 0.9700 $C12-C13$ $1.364 (8)$ $C19-H19A$ 0.9600 $C14-O2$ $1.376 (7)$ $C19-H19A$ 0.9600 $C14-O2$ $1.376 (7)$ $C19-H19A$ 0.9600 $C17-C18$ $1.518 (9)$ $C22-H22A$ 0.9600 $C17-C2$ $1.411 (7)$ $C21-H21A$ 0.9700 $C18-C19$ $1.464 (11)$ $C22-H22A$ 0.9600 $C1-C22$ $1.449 (11)$ $C22-H22A$ 0.9600 $C2-C24$ $1.355 (7)$ $C3-H23$ 0.9300 $C2-C24$ $1.364 (8)$ $C30-H30$ 0.9800 $C2-C24$ $1.363 (8)$ $C29-H29$ 0.9800 $C2-C24$ $1.363 (7)$ $C3-H23$ 0.9300 $C24$	C1—C2	1.350 (8)	C43—O8	1.480 (9)
C3-C4 $1.375 (7)$ C2-H2 0.9301 C4-C5 $1.456 (7)$ C6-H6 0.9300 C5-C6 $1.338 (7)$ C8-H8 0.9800 C5-C10 $1.516 (7)$ C9-H9 0.9800 C6-C7 $1.451 (8)$ C10-H10A 0.9700 C7-C1 $1.216 (6)$ C10-H10B 0.9700 C7-C8 $1.521 (8)$ C12-H12 0.9299 C8-C20 $1.507 (8)$ C13-H13 0.9301 C8-C9 $1.522 (7)$ C15-H15 0.9300 C9-C11 $1.506 (7)$ C16-H16 0.9300 C9-C10 $1.533 (7)$ C17-H17A 0.9699 C11-C16 $1.372 (7)$ C17-H17B 0.9700 C12-C13 $1.464 (8)$ C18-H18A 0.9700 C14-C15 $1.373 (8)$ C19-H19A 0.9600 C14-C15 $1.371 (8)$ C19-H19A 0.9600 C14-C2 $1.376 (7)$ C19-H19B 0.9600 C17-C18 $1.518 (9)$ C22-H22A 0.9600 C17-C18 $1.518 (9)$ C22-H22A 0.9600 C17-C2 $1.441 (7)$ C21-H21A 0.9700 C17-C2 $1.441 (1)$ C22-H22A 0.9600 C17-C2 $1.449 (11)$ C22-H22A 0.9600 C17-C18 $1.518 (9)$ C22-H22A 0.9600 C21-C22 $1.449 (11)$ C22-H23 0.9300 C24-C25 $1.390 (8)$ C30-H30 0.9800 C24-C25 $1.390 (8)$ C30-H30 0.9800 C24-C25 $1.390 (8)$ C30-H30 0.9800 C24-C25 <td< td=""><td>C2—C3</td><td>1.402 (8)</td><td>С1—Н1</td><td>0.9300</td></td<>	C2—C3	1.402 (8)	С1—Н1	0.9300
C4C51.456 (7)C6H60.9300C5C61.338 (7)C8H80.9800C5C101.516 (7)C9H90.9800C6C71.451 (8)C10H10A0.9700C7011.216 (6)C10H10B0.9700C7C81.521 (8)C12H120.9299C8C201.507 (8)C13H130.9301C8C91.522 (7)C15H150.9300C9C111.506 (7)C16H160.9300C9C101.533 (7)C17H17A0.9699C11C161.372 (7)C17H17B0.9700C12C131.364 (8)C18H18A0.9700C12C141.378 (8)C19H19A0.9600C14C151.373 (8)C19H19A0.9600C14C151.373 (8)C19H19A0.9600C14C161.391 (8)C21H21A0.9700C17C181.518 (9)C22H22A0.9600C17C181.518 (9)C22H22A0.9600C14C191.464 (11)C22H22A0.9600C14C191.464 (11)C22H22A0.9600C20O41.335 (7)C23-H230.9300C24C251.390 (8)C30-H300.9800C24C251.390 (8)C30-H300.9800C24C251.390 (8)C30-H300.9800C24C251.390 (8)C30-H300.9800C24C261.378 (7)C31-H31A0.9700C24C271.448 (8)C35-H350.9299 <td>C3—C4</td> <td>1.375 (7)</td> <td>С2—Н2</td> <td>0.9301</td>	C3—C4	1.375 (7)	С2—Н2	0.9301
CSC6 1.338 (7)C8H8 0.9800 C5C10 1.516 (7)C9H9 0.9800 C6C7 1.451 (8)C10H10A 0.9700 C7O1 1.216 (6)C10H10B 0.9700 C7C8 1.521 (8)C12H12 0.9299 C8C20 1.507 (8)C13H13 0.9301 C8C9 1.522 (7)C15H15 0.9300 C9C11 1.506 (7)C16H16 0.9700 C1C16 1.372 (7)C17H17A 0.9699 C11C16 1.372 (7)C17H17B 0.9700 C12C13 1.364 (8)C18H18A 0.9700 C14C15 1.373 (8)C19H19A 0.9600 C14C15 1.376 (7)C19H19A 0.9600 C14C2 1.376 (7)C19H19C 0.9600 C14C2 1.376 (7)C21H21A 0.9700 C17C18 1.518 (9)C22H22A 0.9600 C14C19 1.464 (11)C22H22A 0.9600 C14C19 1.464 (11)C22H22A 0.9600 C14C22 1.336 (7)C23-H23 0.9300 C20-O3 1.193 (7)C23-H23 0.9300 C21C22 1.449 (11)C24-H24 0.9299 C21C4 1.363 (8)C30-H30 0.9800 C24C5 1.390 (8)C30-H30 0.9800 C24C5 1.390 (8)C30-H33 0.9700 C27-C28 1.448 (8)C35-H35 0.9299 C28C6 1.223 (7)C37-H37 <td>C4—C5</td> <td>1.456 (7)</td> <td>С6—Н6</td> <td>0.9300</td>	C4—C5	1.456 (7)	С6—Н6	0.9300
C5-C10 1.516 (7)C9-H9 0.9800 C6-C7 1.451 (8)C10-H10A 0.9700 C7-O1 1.216 (6)C10-H10B 0.9700 C7-C8 1.521 (8)C12-H12 0.9299 C8-C20 1.507 (8)C13-H13 0.9301 C8-C9 1.522 (7)C15-H15 0.9300 C9-C11 1.506 (7)C16-H16 0.9300 C9-C10 1.533 (7)C17-H17A 0.9699 C11-C12 1.400 (8)C18-H18A 0.9700 C12-C13 1.364 (8)C18-H18A 0.9700 C13-C14 1.378 (8)C19-H19A 0.9600 C14-C15 1.373 (8)C19-H19A 0.9600 C14-C15 1.371 (8)C21-H21A 0.9700 C14-C16 1.391 (8)C21-H21A 0.9700 C17-O2 1.411 (7)C21-H21B 0.9700 C17-C2 1.431 (7)C21-H21A 0.9600 C17-C2 1.431 (7)C22-H22A 0.9600 C17-C2 1.431 (7)C22-H22A 0.9600 C17-C2 1.449 (11)C22-H22A 0.9600 C20-O4 1.335 (7)C23-H23 0.9300 C21-C22 1.449 (11)C24-H24 0.9299 C21-O4 1.450 (7)C31-H31A 0.9700 C22-C24 1.356 (8)C29-H29 0.9800 C24-C25 1.390 (8)C30-H30 0.9800 C24-C25 1.390 (8)C30-H30 0.9209 C21-C24 1.450 (7)C31-H31A 0.9700 C27-	C5—C6	1.338 (7)	С8—Н8	0.9800
C6-C71.451 (8)C10-H10A0.9700C7-O11.216 (6)C10-H10B0.9700C7-C81.521 (8)C12-H120.9299C8-C201.507 (8)C13-H130.9301C8-C91.522 (7)C15-H150.9300C9-C111.506 (7)C16-H160.9300C9-C101.533 (7)C17-H17A0.9699C11-C161.372 (7)C17-H17B0.9700C12-C131.364 (8)C18-H18A0.9700C14-C151.373 (8)C19-H19B0.9600C14-C151.373 (8)C19-H19B0.9600C14-O21.376 (7)C19-H19B0.9600C14-O21.376 (7)C19-H19B0.9600C15-C161.391 (8)C21-H21A0.9700C17-O21.411 (7)C21-H21B0.9700C17-C181.518 (9)C22-H22A0.9600C20-O31.193 (7)C22-H22B0.9599C20-O31.93 (7)C22-H22A0.9600C21-C221.449 (11)C24-H240.9299C21-O41.457 (8)C27-H270.9301C23-C241.335 (7)C23-H230.9300C25-C261.378 (7)C31-H31A0.9700C25-C261.378 (7)C31-H31A0.9700C27-C281.448 (8)C35-H350.9299C28-O51.223 (7)C34-H340.9300C27-C281.510 (8)C38-H380.9300C28-C291.510 (8)C38-H380.9300	C5—C10	1.516 (7)	С9—Н9	0.9800
C7-O11.216 (6) $C10-H10B$ 0.9700 $C7-C8$ 1.521 (8) $C12-H12$ 0.9299 $C8-C20$ 1.507 (8) $C13-H13$ 0.9301 $C8-C9$ 1.522 (7) $C15-H15$ 0.9300 $C9-C11$ 1.506 (7) $C16-H16$ 0.9300 $C9-C10$ 1.533 (7) $C17-H17A$ 0.9699 $C11-C16$ 1.372 (7) $C17-H17B$ 0.9700 $C11-C12$ 1.400 (8) $C18-H18A$ 0.9700 $C12-C13$ 1.364 (8) $C18-H18B$ 0.9700 $C13-C14$ 1.378 (8) $C19-H19A$ 0.9600 $C14-C15$ 1.373 (8) $C19-H19A$ 0.9600 $C14-C2$ 1.376 (7) $C19-H19B$ 0.9600 $C14-C2$ 1.376 (7) $C1-H21A$ 0.9700 $C17-C18$ 1.518 (9) $C22-H22A$ 0.9600 $C17-C18$ 1.518 (9) $C22-H22A$ 0.9600 $C18-C19$ 1.464 (11) $C22-H22A$ 0.9601 $C20-O4$ 1.335 (7) $C23-H23$ 0.9300 $C21-C22$ 1.449 (11) $C24-H24$ 0.9299 $C21-C24$ 1.363 (8) $C29-H29$ 0.9800 $C24-C25$ 1.390 (8) $C30-H30$ 0.9800 $C25-C26$ 1.378 (7) $C31-H31A$ 0.9700 $C27-C28$ 1.448 (8) $C35-H35$ 0.9299 $C28-O5$ 1.223 (7) $C3-H37$ 0.9300 $C27-C28$ 1.510 (8) $C38-H38$ 0.9300 $C28-C29$ 1.510 (8) $C38-H38$ 0.9300	C6—C7	1.451 (8)	C10—H10A	0.9700
C7-C8 $1.521 (8)$ $C12-H12$ 0.9299 $C8-C20$ $1.507 (8)$ $C13-H13$ 0.9301 $C8-C9$ $1.522 (7)$ $C15-H15$ 0.9300 $C9-C11$ $1.506 (7)$ $C16-H16$ 0.9300 $C9-C10$ $1.533 (7)$ $C17-H17A$ 0.9699 $C11-C16$ $1.372 (7)$ $C17-H17B$ 0.9700 $C12-C13$ $1.364 (8)$ $C18-H18A$ 0.9700 $C12-C13$ $1.364 (8)$ $C19-H19A$ 0.9600 $C14-C15$ $1.373 (8)$ $C19-H19B$ 0.9600 $C14-C2$ $1.376 (7)$ $C19-H19B$ 0.9600 $C14-C2$ $1.376 (7)$ $C19-H19B$ 0.9600 $C17-C18$ $1.518 (9)$ $C22-H22A$ 0.9600 $C17-C18$ $1.518 (9)$ $C22-H22A$ 0.9600 $C18-C19$ $1.464 (11)$ $C22-H22B$ 0.9599 $C20-O3$ $1.193 (7)$ $C22-H22A$ 0.9601 $C20-O4$ $1.335 (7)$ $C23-H23$ 0.9300 $C21-C22$ $1.449 (11)$ $C24-H24$ 0.9299 $C21-C24$ $1.663 (8)$ $C27-H27$ 0.9301 $C23-C24$ $1.363 (8)$ $C29-H29$ 0.9800 $C24-C25$ $1.390 (8)$ $C30-H30$ 0.9800 $C25-C26$ $1.378 (7)$ $C31-H31A$ 0.9700 $C27-C28$ $1.448 (8)$ $C35-H35$ 0.9299 $C28-C29$ $1.510 (8)$ $C38-H38$ 0.9300 $C28-C29$ $1.510 (8)$ $C38-H38$ 0.9300	C7—O1	1.216 (6)	C10—H10B	0.9700
C8-C201.507 (8)C13-H130.9301C8-C91.522 (7)C15-H150.9300C9-C111.506 (7)C16-H160.9300C9-C101.533 (7)C17-H17A0.9699C11-C161.372 (7)C17-H17B0.9700C11-C121.400 (8)C18-H18A0.9700C12-C131.364 (8)C18-H18B0.9700C14-C151.378 (8)C19-H19A0.9600C14-C151.373 (8)C19-H19A0.9600C14-C21.376 (7)C19-H19B0.9600C15-C161.391 (8)C21-H21A0.9700C17-O21.411 (7)C21-H21B0.9700C17-C181.518 (9)C22-H22A0.9600C18-C191.464 (11)C22-H22A0.9600C20-O41.335 (7)C23-H230.9300C21-C221.449 (11)C24-H240.9299C21-O41.457 (8)C27-H270.9301C23-C241.363 (8)C29-H290.9800C24-C251.390 (8)C30-H300.9800C25-C261.378 (7)C31-H31A0.9700C26-C321.450 (7)C31-H31A0.9700C27-C281.448 (8)C35-H350.9299C28-O51.223 (7)C37-H370.9300C28-C291.510 (8)C38-H380.9300C28-C291.510 (8)C38-H380.9300	C7—C8	1.521 (8)	C12—H12	0.9299
C8-C9 1.522 (7)C15-H15 0.9300 C9-C11 1.506 (7)C16-H16 0.9300 C9-C10 1.533 (7)C17-H17A 0.9699 C11-C16 1.372 (7)C17-H17B 0.9700 C11-C12 1.400 (8)C18-H18A 0.9700 C12-C13 1.364 (8)C18-H18B 0.9700 C14-C15 1.373 (8)C19-H19A 0.9600 C14-C15 1.373 (8)C19-H19B 0.9600 C14-C2 1.76 (7)C19-H19C 0.9600 C15-C16 1.391 (8)C21-H21A 0.9700 C17-C2 1.411 (7)C21-H21B 0.9700 C17-C18 1.518 (9)C22-H22A 0.9600 C18-C19 1.464 (11)C22-H22B 0.9599 C20-O4 1.335 (7)C23-H23 0.9300 C21-C22 1.449 (11)C24-H24 0.9299 C21-O4 1.467 (8)C27-H27 0.9301 C23-C24 1.336 (8)C29-H29 0.9800 C24-C25 1.390 (8)C30-H30 0.9800 C25-C26 1.378 (7)C31-H31A 0.9700 C27-C32 1.448 (8)C35-H35 0.9299 C28-C5 1.223 (7)C34-H34 0.9300 C27-C28 1.448 (8)C35-H35 0.9299 C28-C29 1.510 (8)C38-H38 0.9300 C28-C29 1.510 (8)C38-H38 0.9300	C8—C20	1.507 (8)	С13—Н13	0.9301
C9C11 1.506 (7)C16H16 0.9300 C9C10 1.533 (7)C17H17A 0.9699 C11C16 1.372 (7)C17H17B 0.9700 C11C12 1.400 (8)C18H18A 0.9700 C12C13 1.364 (8)C18H18B 0.9700 C13C14 1.378 (8)C19H19A 0.9600 C14C15 1.373 (8)C19H19B 0.9600 C14C2 1.376 (7)C19H19C 0.9600 C14C2 1.376 (7)C19H19C 0.9600 C15C16 1.391 (8)C21H21A 0.9700 C17O2 1.411 (7)C21H21B 0.9700 C17C18 1.518 (9)C22H22A 0.9600 C18C19 1.464 (11)C22H22B 0.9599 C20O3 1.193 (7)C23H23 0.9300 C21C22 1.449 (11)C24H24 0.9299 C21O4 1.363 (8)C29H29 0.9800 C24C25 1.390 (8)C30H30 0.9800 C25C26 1.378 (7)C31H31A 0.9700 C27-C32 1.450 (7)C31H31B 0.9700 C27-C28 1.448 (8)C35H35 0.9299 C27-C28 1.448 (8)C35-H35 0.9299 C28-C29 1.510 (8)C38-H38 0.9300 C28-C29 1.510 (8)C38-H38 0.9300	C8—C9	1.522 (7)	C15—H15	0.9300
C9—C101.533 (7)C17—H17A0.9699C11—C161.372 (7)C17—H17B0.9700C11—C121.400 (8)C18—H18A0.9700C12—C131.364 (8)C18—H18B0.9700C13—C141.378 (8)C19—H19A0.9600C14—C151.373 (8)C19—H19B0.9600C14—C161.391 (8)C21—H21A0.9700C15—C161.391 (8)C21—H21A0.9700C17—C21.411 (7)C21—H21B0.9700C17—C181.518 (9)C22—H22A0.9600C20—O31.193 (7)C22—H22C0.9601C20—O41.335 (7)C23—H230.9300C21—C221.449 (11)C24—H240.9299C21—O41.467 (8)C27—H270.9301C23—C241.363 (8)C29—H290.9800C25—C261.378 (7)C31—H31A0.9700C25—C261.378 (7)C31—H31A0.9700C27—C321.448 (8)C35—H350.9299C28—O51.223 (7)C37—H370.9300C27—C281.510 (8)C38—H380.9300C27—C291.510 (8)C38—H380.9300C28—C291.510 (8)C38—H380.9300	C9—C11	1.506 (7)	С16—Н16	0.9300
C11-C16 1.372 (7) $C17-H17B$ 0.9700 $C11-C12$ 1.400 (8) $C18-H18A$ 0.9700 $C12-C13$ 1.364 (8) $C18-H18B$ 0.9700 $C13-C14$ 1.378 (8) $C19-H19A$ 0.9600 $C14-C15$ 1.373 (8) $C19-H19B$ 0.9600 $C14-C2$ 1.376 (7) $C19-H19B$ 0.9600 $C15-C16$ 1.391 (8) $C21-H21A$ 0.9700 $C17-C2$ 1.411 (7) $C21-H21B$ 0.9700 $C17-C18$ 1.518 (9) $C22-H22A$ 0.9600 $C18-C19$ 1.464 (11) $C22-H22B$ 0.9599 $C20-O3$ 1.193 (7) $C22-H22C$ 0.9601 $C21-C22$ 1.449 (11) $C24-H24$ 0.9299 $C21-C22$ 1.449 (11) $C24-H24$ 0.9299 $C21-C24$ 1.363 (8) $C29-H29$ 0.9800 $C24-C25$ 1.390 (8) $C30-H30$ 0.9800 $C25-C26$ 1.378 (7) $C31-H31A$ 0.9700 $C27-C32$ 1.448 (8) $C35-H35$ 0.9299 $C27-C28$ 1.448 (8) $C35-H35$ 0.9299 $C27-C28$ 1.448 (8) $C35-H35$ 0.9299 $C28-C29$ 1.510 (8) $C38-H38$ 0.9300 $C28-C29$ 1.503 (8) $C39-H39A$ 0.9700	C9—C10	1.533 (7)	С17—Н17А	0.9699
C11—C121.400 (8)C18—H18A0.9700C12—C131.364 (8)C18—H18B0.9700C13—C141.378 (8)C19—H19A0.9600C14—C151.373 (8)C19—H19B0.9600C14—C21.376 (7)C19—H19C0.9600C15—C161.391 (8)C21—H21A0.9700C17—C21.411 (7)C21—H21B0.9700C17—C181.518 (9)C22—H22A0.9600C18—C191.464 (11)C22—H22B0.9599C20—O31.193 (7)C22—H22C0.9601C21—C221.449 (11)C24—H240.9299C21—C221.449 (11)C24—H240.9299C21—C41.363 (8)C29—H290.9800C24—C251.390 (8)C30—H300.9800C25—C261.378 (7)C31—H31A0.9700C27—C321.450 (7)C31—H31B0.9700C27—C321.338 (7)C34—H340.9300C27—C281.448 (8)C35—H350.9299C28—C591.510 (8)C38—H380.9300C28—C291.510 (8)C38—H380.9300	C11—C16	1.372 (7)	С17—Н17В	0.9700
C12—C13 1.364 (8)C18—H18B 0.9700 C13—C14 1.378 (8)C19—H19A 0.9600 C14—C15 1.373 (8)C19—H19B 0.9600 C14—O2 1.376 (7)C19—H19C 0.9600 C15—C16 1.391 (8)C21—H21A 0.9700 C17—O2 1.411 (7)C21—H21B 0.9700 C17—C18 1.518 (9)C22—H22A 0.9600 C18—C19 1.464 (11)C22—H22B 0.9599 C20—O3 1.193 (7)C22—H22C 0.9601 C20—O4 1.335 (7)C23—H23 0.9300 C21—C22 1.449 (11)C24—H24 0.9299 C21—O4 1.467 (8)C27—H27 0.9301 C23—C24 1.363 (8)C29—H29 0.9800 C24—C25 1.390 (8)C30—H30 0.9800 C25—C26 1.378 (7)C31—H31A 0.9700 C27—C32 1.448 (8)C35—H35 0.9299 C24—C25 1.338 (7)C31—H31B 0.9700 C27—C28 1.448 (8)C35—H35 0.9299 C28—O5 1.223 (7)C37—H37 0.9300 C28—C29 1.510 (8) $C38$ —H38 0.9300	C11—C12	1.400 (8)	C18—H18A	0.9700
C13-C14 $1.378 (8)$ $C19-H19A$ 0.9600 $C14-C15$ $1.373 (8)$ $C19-H19B$ 0.9600 $C14-O2$ $1.376 (7)$ $C19-H19C$ 0.9600 $C15-C16$ $1.391 (8)$ $C21-H21A$ 0.9700 $C17-O2$ $1.411 (7)$ $C21-H21B$ 0.9700 $C17-C18$ $1.518 (9)$ $C22-H22A$ 0.9600 $C18-C19$ $1.464 (11)$ $C22-H22B$ 0.9599 $C20-O3$ $1.193 (7)$ $C22-H22C$ 0.9601 $C20-O4$ $1.335 (7)$ $C23-H23$ 0.9300 $C21-C22$ $1.449 (11)$ $C24-H24$ 0.9299 $C21-O4$ $1.467 (8)$ $C27-H27$ 0.9301 $C23-C24$ $1.363 (8)$ $C29-H29$ 0.9800 $C24-C25$ $1.390 (8)$ $C30-H30$ 0.9800 $C25-C26$ $1.378 (7)$ $C31-H31A$ 0.9700 $C27-C32$ $1.448 (8)$ $C35-H35$ 0.9299 $C27-C28$ $1.448 (8)$ $C35-H35$ 0.9299 $C28-O5$ $1.223 (7)$ $C37-H37$ 0.9300 $C28-C29$ $1.510 (8)$ $C30-H30$ 0.9300	C12—C13	1.364 (8)	C18—H18B	0.9700
C14-C15 $1.373 (8)$ $C19-H19B$ 0.9600 $C14-O2$ $1.376 (7)$ $C19-H19C$ 0.9600 $C15-C16$ $1.391 (8)$ $C21-H21A$ 0.9700 $C17-O2$ $1.411 (7)$ $C21-H21B$ 0.9700 $C17-C18$ $1.518 (9)$ $C22-H22A$ 0.9600 $C18-C19$ $1.464 (11)$ $C22-H22B$ 0.9599 $C20-O3$ $1.193 (7)$ $C22-H22C$ 0.9601 $C20-O4$ $1.335 (7)$ $C23-H23$ 0.9300 $C21-C22$ $1.449 (11)$ $C24-H24$ 0.9299 $C21-O4$ $1.467 (8)$ $C27-H27$ 0.9301 $C23-C24$ $1.363 (8)$ $C29-H29$ 0.9800 $C24-C25$ $1.390 (8)$ $C30-H30$ 0.9800 $C25-C26$ $1.378 (7)$ $C31-H31A$ 0.9700 $C27-C32$ $1.448 (8)$ $C35-H35$ 0.9299 $C27-C28$ $1.448 (8)$ $C35-H35$ 0.9299 $C28-O5$ $1.223 (7)$ $C37-H37$ 0.9300 $C28-C29$ $1.510 (8)$ $C39-H39A$ 0.9700	C13—C14	1.378 (8)	C19—H19A	0.9600
C14-O2 1.376 (7) $C19-H19C$ 0.9600 $C15-C16$ 1.391 (8) $C21-H21A$ 0.9700 $C17-O2$ 1.411 (7) $C21-H21B$ 0.9700 $C17-C18$ 1.518 (9) $C22-H22A$ 0.9600 $C18-C19$ 1.464 (11) $C22-H22B$ 0.9599 $C20-O3$ 1.193 (7) $C22-H22C$ 0.9601 $C20-O4$ 1.335 (7) $C23-H23$ 0.9300 $C21-C22$ 1.449 (11) $C24-H24$ 0.9299 $C21-O4$ 1.467 (8) $C27-H27$ 0.9301 $C23-C24$ 1.363 (8) $C29-H29$ 0.9800 $C24-C25$ 1.390 (8) $C30-H30$ 0.9800 $C25-C26$ 1.378 (7) $C31-H31A$ 0.9700 $C27-C32$ 1.450 (7) $C31-H31B$ 0.9700 $C27-C32$ 1.338 (7) $C34-H34$ 0.9300 $C27-C28$ 1.448 (8) $C35-H35$ 0.9299 $C28-C5$ 1.223 (7) $C37-H37$ 0.9300 $C28-C29$ 1.510 (8) $C38-H38$ 0.9700	C14—C15	1.373 (8)	С19—Н19В	0.9600
C15—C16 $1.391 (8)$ C21—H21A 0.9700 C17—C2 $1.411 (7)$ C21—H21B 0.9700 C17—C18 $1.518 (9)$ C22—H22A 0.9600 C18—C19 $1.464 (11)$ C22—H22B 0.9599 C20—O3 $1.193 (7)$ C22—H22C 0.9601 C20—O4 $1.335 (7)$ C23—H23 0.9300 C21—C22 $1.449 (11)$ C24—H24 0.9299 C21—O4 $1.467 (8)$ C27—H27 0.9301 C23—C24 $1.363 (8)$ C29—H29 0.9800 C24—C25 $1.390 (8)$ C30—H30 0.9800 C25—C26 $1.378 (7)$ C31—H31A 0.9700 C27—C32 $1.448 (8)$ C35—H35 0.9299 C27—C28 $1.448 (8)$ C35—H35 0.9299 C28—O5 $1.223 (7)$ C37—H37 0.9300 C28—C29 $1.510 (8)$ C38—H38 0.9300 C29—C42 $1.503 (8)$ C39—H30A 0.9700	C14—O2	1.376 (7)	С19—Н19С	0.9600
C1702 $1.411 (7)$ C21H21B 0.9700 C17C18 $1.518 (9)$ C22H22A 0.9600 C18C19 $1.464 (11)$ C22H22B 0.9599 C2003 $1.193 (7)$ C22H22C 0.9601 C2004 $1.335 (7)$ C23H23 0.9300 C21C22 $1.449 (11)$ C24H24 0.9299 C2104 $1.467 (8)$ C27H27 0.9301 C23C24 $1.363 (8)$ C29H29 0.9800 C24C25 $1.390 (8)$ C30H30 0.9700 C25C26 $1.378 (7)$ C31H31A 0.9700 C27C32 $1.449 (8)$ C35H35 0.9299 C27C28 $1.448 (8)$ C35H35 0.9299 C28C5 $1.223 (7)$ C37H37 0.9300 C28C29 $1.510 (8)$ C38H38 0.9300 C29C42 $1.503 (8)$ C39H39A 0.9700	C15—C16	1.391 (8)	C21—H21A	0.9700
C17C18 $1.518 (9)$ $C22H22A$ 0.9600 $C18C19$ $1.464 (11)$ $C22H22B$ 0.9599 $C2003$ $1.193 (7)$ $C22H22C$ 0.9601 $C2004$ $1.335 (7)$ $C23H23$ 0.9300 $C21C22$ $1.449 (11)$ $C24H24$ 0.9299 $C2104$ $1.467 (8)$ $C27H27$ 0.9301 $C23C24$ $1.363 (8)$ $C29H29$ 0.9800 $C24C25$ $1.390 (8)$ $C30H30$ 0.9800 $C25C26$ $1.378 (7)$ $C31H31A$ 0.9700 $C26C32$ $1.450 (7)$ $C34H34$ 0.9300 $C27C28$ $1.448 (8)$ $C35H35$ 0.9299 $C28O5$ $1.223 (7)$ $C37H37$ 0.9300 $C28C29$ $1.510 (8)$ $C38H38$ 0.9700	C17—O2	1.411 (7)	C21—H21B	0.9700
C18—C19 $1.464 (11)$ C22—H22B 0.9599 C20—O3 $1.193 (7)$ C22—H22C 0.9601 C20—O4 $1.335 (7)$ C23—H23 0.9300 C21—C22 $1.449 (11)$ C24—H24 0.9299 C21—O4 $1.467 (8)$ C27—H27 0.9301 C23—C24 $1.363 (8)$ C29—H29 0.9800 C24—C25 $1.390 (8)$ C30—H30 0.9800 C25—C26 $1.378 (7)$ C31—H31A 0.9700 C26—C32 $1.450 (7)$ C31—H31B 0.9700 C27—C32 $1.338 (7)$ C34—H34 0.9300 C27—C28 $1.448 (8)$ C35—H35 0.9299 C28—O5 $1.223 (7)$ C37—H37 0.9300 C28—C29 $1.510 (8)$ C38—H38 0.9300 C29—C42 $1.503 (8)$ C39—H39A 0.9700	C17—C18	1.518 (9)	C22—H22A	0.9600
C20—O3 $1.193 (7)$ C22—H22C 0.9601 C20—O4 $1.335 (7)$ C23—H23 0.9300 C21—C22 $1.449 (11)$ C24—H24 0.9299 C21—O4 $1.467 (8)$ C27—H27 0.9301 C23—C24 $1.363 (8)$ C29—H29 0.9800 C24—C25 $1.390 (8)$ C30—H30 0.9800 C25—C26 $1.378 (7)$ C31—H31A 0.9700 C26—C32 $1.450 (7)$ C31—H31B 0.9700 C27—C32 $1.338 (7)$ C34—H34 0.9300 C27—C28 $1.448 (8)$ C35—H35 0.9299 C28—O5 $1.223 (7)$ C37—H37 0.9300 C28—C29 $1.510 (8)$ C38—H38 0.9300 C29—C42 $1.503 (8)$ C39—H39A 0.9700	C18—C19	1.464 (11)	С22—Н22В	0.9599
C20—O4 $1.335 (7)$ C23—H23 0.9300 C21—C22 $1.449 (11)$ C24—H24 0.9299 C21—O4 $1.467 (8)$ C27—H27 0.9301 C23—C24 $1.363 (8)$ C29—H29 0.9800 C24—C25 $1.390 (8)$ C30—H30 0.9800 C25—C26 $1.378 (7)$ C31—H31A 0.9700 C26—C32 $1.450 (7)$ C31—H31B 0.9700 C27—C32 $1.338 (7)$ C34—H34 0.9300 C27—C28 $1.448 (8)$ C35—H35 0.9299 C28—O5 $1.223 (7)$ C37—H37 0.9300 C28—C29 $1.510 (8)$ C38—H38 0.9300 C29—C42 $1.503 (8)$ C39—H39A 0.9700	C20—O3	1.193 (7)	C22—H22C	0.9601
C21—C22 $1.449 (11)$ C24—H24 0.9299 C21—O4 $1.467 (8)$ C27—H27 0.9301 C23—C24 $1.363 (8)$ C29—H29 0.9800 C24—C25 $1.390 (8)$ C30—H30 0.9800 C25—C26 $1.378 (7)$ C31—H31A 0.9700 C26—C32 $1.450 (7)$ C31—H31B 0.9700 C27—C32 $1.338 (7)$ C34—H34 0.9300 C27—C28 $1.448 (8)$ C35—H35 0.9299 C28—O5 $1.223 (7)$ C37—H37 0.9300 C28—C29 $1.510 (8)$ C38—H38 0.9300 C29—C42 $1.503 (8)$ C39—H39A 0.9700	C20—O4	1.335 (7)	С23—Н23	0.9300
C21—O4 1.467 (8) C27—H27 0.9301 C23—C24 1.363 (8) C29—H29 0.9800 C24—C25 1.390 (8) C30—H30 0.9800 C25—C26 1.378 (7) C31—H31A 0.9700 C26—C32 1.450 (7) C31—H31B 0.9700 C27—C32 1.338 (7) C34—H34 0.9300 C27—C28 1.448 (8) C35—H35 0.9299 C28—O5 1.223 (7) C37—H37 0.9300 C28—C29 1.510 (8) C38—H38 0.9300	C21—C22	1.449 (11)	C24—H24	0.9299
C23—C24 1.363 (8) C29—H29 0.9800 C24—C25 1.390 (8) C30—H30 0.9800 C25—C26 1.378 (7) C31—H31A 0.9700 C26—C32 1.450 (7) C31—H31B 0.9700 C27—C32 1.338 (7) C34—H34 0.9300 C27—C28 1.448 (8) C35—H35 0.9299 C28—C5 1.223 (7) C37—H37 0.9300 C28—C29 1.510 (8) C38—H38 0.9300 C29—C42 1.503 (8) C39—H39A 0.9700	C21—O4	1.467 (8)	С27—Н27	0.9301
C24—C25 1.390 (8) C30—H30 0.9800 C25—C26 1.378 (7) C31—H31A 0.9700 C26—C32 1.450 (7) C31—H31B 0.9700 C27—C32 1.338 (7) C34—H34 0.9300 C27—C28 1.448 (8) C35—H35 0.9299 C28—O5 1.223 (7) C37—H37 0.9300 C28—C29 1.510 (8) C38—H38 0.9300 C29—C42 1.503 (8) C39—H39A 0.9700	C23—C24	1.363 (8)	С29—Н29	0.9800
C25—C26 1.378 (7) C31—H31A 0.9700 C26—C32 1.450 (7) C31—H31B 0.9700 C27—C32 1.338 (7) C34—H34 0.9300 C27—C28 1.448 (8) C35—H35 0.9299 C28—O5 1.223 (7) C37—H37 0.9300 C28—C29 1.510 (8) C38—H38 0.9300 C29—C42 1.503 (8) C39—H39A 0.9700	C24—C25	1.390 (8)	С30—Н30	0.9800
C26—C32 1.450 (7) C31—H31B 0.9700 C27—C32 1.338 (7) C34—H34 0.9300 C27—C28 1.448 (8) C35—H35 0.9299 C28—O5 1.223 (7) C37—H37 0.9300 C28—C29 1.510 (8) C38—H38 0.9300 C29—C42 1.503 (8) C39—H39A 0.9700	C25—C26	1.378 (7)	C31—H31A	0.9700
C27—C32 1.338 (7) C34—H34 0.9300 C27—C28 1.448 (8) C35—H35 0.9299 C28—O5 1.223 (7) C37—H37 0.9300 C28—C29 1.510 (8) C38—H38 0.9300 C29—C42 1.503 (8) C39—H39A 0.9700	C26—C32	1.450 (7)	С31—Н31В	0.9700
C27—C281.448 (8)C35—H350.9299C28—O51.223 (7)C37—H370.9300C28—C291.510 (8)C38—H380.9300C29—C421.503 (8)C39—H39A0.9700	C27—C32	1.338 (7)	С34—Н34	0.9300
C28—O5 1.223 (7) C37—H37 0.9300 C28—C29 1.510 (8) C38—H38 0.9300 C29—C42 1.503 (8) C39—H39A 0.9700	C27—C28	1.448 (8)	С35—Н35	0.9299
C28—C29 1.510 (8) C38—H38 0.9300 C29—C42 1.503 (8) C39—H39A 0.9700	C28—O5	1.223 (7)	С37—Н37	0.9300
C29_C42 1 503 (8) C39_H30A 0 0700	C28—C29	1.510 (8)	С38—Н38	0.9300
(2) (12 (1.505 (0) (0) (0) (0) (0))	C29—C42	1.503 (8)	С39—Н39А	0.9700
C29—C30 1.530 (7) C39—H39B 0.9701	C29—C30	1.530 (7)	С39—Н39В	0.9701
C30—C31 1.519 (7) C40—H40A 0.9700	C30—C31	1.519 (7)	C40—H40A	0.9700
C30—C33 1.519 (7) C40—H40B 0.9700	C30—C33	1.519 (7)	C40—H40B	0.9700
C31—C32 1.514 (7) C41—H41A 0.9600	C31—C32	1.514 (7)	C41—H41A	0.9600

C33—C34	1.376 (7)	C41—H41B	0.9601
C33—C38	1.393 (8)	C41—H41C	0.9600
C34—C35	1.386 (8)	C43—H43A	0.9700
C35—C36	1.371 (8)	C43—H43B	0.9700
C36—C37	1.376 (8)	C44—H44A	0.9600
C36—O6	1.385 (7)	C44—H44B	0.9600
C37—C38	1.366 (8)	C44—H44C	0.9600
C1—S1—C4	93.0 (3)	С10—С9—Н9	107.0
C23—S2—C26	93.2 (3)	C5-C10-H10A	108.8
C2—C1—S1	112.6 (5)	C9—C10—H10A	108.8
C1—C2—C3	111.4 (5)	C5-C10-H10B	108.9
C4—C3—C2	115.2 (5)	C9—C10—H10B	108.8
C4—C3—Br1	127.1 (4)	H10A—C10—H10B	107.7
C2—C3—Br1	117.6 (4)	C13—C12—H12	119.4
C3—C4—C5	133.8 (5)	С11—С12—Н12	119.6
C3—C4—S1	107.7 (4)	С12—С13—Н13	119.3
C5—C4—S1	118.5 (4)	C14—C13—H13	119.3
C6—C5—C4	122.6 (5)	C14—C15—H15	120.6
C6—C5—C10	119.6 (5)	С16—С15—Н15	120.4
C4—C5—C10	117.8 (5)	С11—С16—Н16	118.6
C5—C6—C7	123.6 (5)	С15—С16—Н16	118.5
O1—C7—C6	120.9 (5)	O2—C17—H17A	110.1
O1—C7—C8	120.4 (5)	С18—С17—Н17А	110.1
C6—C7—C8	118.7 (5)	O2—C17—H17B	110.2
C20—C8—C7	106.6 (5)	С18—С17—Н17В	110.3
C20—C8—C9	112.3 (4)	H17A—C17—H17B	108.5
C7—C8—C9	112.9 (4)	C19—C18—H18A	109.0
C11—C9—C8	113.7 (4)	C17—C18—H18A	108.9
C11—C9—C10	111.4 (4)	C19—C18—H18B	108.7
C8—C9—C10	110.3 (4)	C17—C18—H18B	108.8
C5—C10—C9	113.6 (4)	H18A—C18—H18B	107.7
C16—C11—C12	116.6 (5)	C18—C19—H19A	109.6
C16—C11—C9	120.7 (5)	C18—C19—H19B	109.5
C12—C11—C9	122.7 (5)	H19A—C19—H19B	109.5
C13—C12—C11	120.9 (5)	C18—C19—H19C	109.3
C12—C13—C14	121.4 (6)	H19A—C19—H19C	109.5
C15-C14-O2	125.2 (5)	H19B—C19—H19C	109.5
C15—C14—C13	119.1 (6)	C22—C21—H21A	110.1
02-C14-C13	1157(6)	04—C21—H21A	110.3
C14-C15-C16	119.0 (5)	$C_{22} = C_{21} = H_{21}B$	110.3
$C_{11} - C_{16} - C_{15}$	122.9 (5)	04—C21—H21B	110.2
02-C17-C18	107.6 (6)	$H_{21}A - C_{21} - H_{21}B$	108.5
C19—C18—C17	113.6 (8)	C21—C22—H22A	109.4
O3-C20-O4	124.1 (6)	C21—C22—H22B	109.5
03-C20-C8	123.6 (5)	H22A—C22—H22B	109.5
04-C20-C8	112.3 (5)	C21—C22—H22C	109.5
C22—C21—O4	107.4 (7)	H22A—C22—H22C	109.5
C24—C23—S2	111.3 (5)	H22B-C22-H22C	109.5
C_{23} C_{24} C_{25}	112.6 (6)	C24—C23—H23	124 5
	= (0)		

C26—C25—C24	115.3 (5)	S2—C23—H23	124.2
C26—C25—Br2	126.7 (4)	C23—C24—H24	123.7
C24—C25—Br2	118.0 (4)	C25—C24—H24	123.7
C25—C26—C32	134.8 (5)	С32—С27—Н27	118.4
C25—C26—S2	107.7 (4)	С28—С27—Н27	118.2
C32—C26—S2	117.5 (4)	С42—С29—Н29	108.3
C32—C27—C28	123.4 (5)	С28—С29—Н29	108.4
O5—C28—C27	119.7 (6)	С30—С29—Н29	108.5
O5—C28—C29	120.8 (6)	С31—С30—Н30	106.9
C27—C28—C29	119.5 (5)	С33—С30—Н30	106.9
C42—C29—C28	107.6 (5)	С29—С30—Н30	107.0
C42—C29—C30	111.9 (4)	С32—С31—Н31А	108.7
C28—C29—C30	112.0 (5)	С30—С31—Н31А	108.6
C31—C30—C33	112.3 (4)	С32—С31—Н31В	108.9
C31—C30—C29	110.5 (4)	С30—С31—Н31В	108.7
C33—C30—C29	112.8 (4)	H31A—C31—H31B	107.6
C32—C31—C30	114.2 (5)	С33—С34—Н34	119.0
C27—C32—C26	122.5 (5)	С35—С34—Н34	119.0
C27—C32—C31	119.0 (5)	С36—С35—Н35	120.3
C26—C32—C31	118.5 (5)	С34—С35—Н35	120.3
C34—C33—C38	117.2 (5)	С38—С37—Н37	119.7
C34—C33—C30	120.0 (5)	С36—С37—Н37	119.7
C38—C33—C30	122.8 (5)	С37—С38—Н38	119.4
C33—C34—C35	122.0 (5)	С33—С38—Н38	119.4
C36—C35—C34	119.4 (5)	О6—С39—Н39А	110.2
C35—C36—C37	119.5 (6)	С40—С39—Н39А	110.2
C35—C36—O6	124.4 (5)	O6—C39—H39B	110.0
C37—C36—O6	116.1 (5)	С40—С39—Н39В	110.1
C38—C37—C36	120.7 (6)	H39A—C39—H39B	108.5
C37—C38—C33	121.2 (5)	С39—С40—Н40А	109.2
O6—C39—C40	107.9 (5)	C41—C40—H40A	109.1
C39—C40—C41	112.1 (7)	С39—С40—Н40В	109.1
O7—C42—O8	123.2 (6)	C41—C40—H40B	109.3
O7—C42—C29	124.7 (6)	H40A—C40—H40B	107.9
O8—C42—C29	112.1 (5)	C40—C41—H41A	109.6
C44—C43—O8	111.6 (9)	C40—C41—H41B	109.4
C14—O2—C17	118.9 (5)	H41A—C41—H41B	109.5
C20—O4—C21	114.1 (5)	C40—C41—H41C	109.4
C36—O6—C39	118.1 (5)	H41A—C41—H41C	109.5
C42—O8—C43	114.5 (6)	H41B—C41—H41C	109.5
C2—C1—H1	123.7	C44—C43—H43A	109.3
S1—C1—H1	123.7	O8—C43—H43A	109.3
C1—C2—H2	124.4	C44—C43—H43B	109.3
C3—C2—H2	124.2	O8—C43—H43B	109.3
С5—С6—Н6	118.3	H43A—C43—H43B	108.0
С7—С6—Н6	118.1	C43—C44—H44A	109.5
С20—С8—Н8	108.2	C43—C44—H44B	109.5
С7—С8—Н8	108.2	H44A—C44—H44B	109.5
С9—С8—Н8	108.4	C43—C44—H44C	109.5

С11—С9—Н9	107.0	H44A—C44—H44C	109.5
С8—С9—Н9	107.1	H44B—C44—H44C	109.5

Fig. 1

